Electricity generation by wind turbines

Wind turbines for power generation

- Grid-connected wind turbines
- Wind turbines for stand-alone operation
- Wind turbines for hybrid systems, e.g. wind-diesel or windphotovoltaic systems

Directly grid-connected asynchronous generators

Directly grid-connected asynchronous generator with dynamic slip control

Fig. 13-6 Influencing the generator characteristic by additional variable resistances in the rotor circuit of an asynchronous machine

For normal winds the bridge at the slip rings is short-circuited mechanically. For strong winds the mechanical bridge is opened and the additional resistances in the rotor circuit increase the slip, which can now be manipulated.

Fig. 13-7 Block diagram of the dynamic slip control by additional variable resistances in the rotor circuit of an asynchronous machine

The controller will use a clock in the kHz range to prescribe the fraction of time for which the additional resistors are in the control circuits. Thus the mean resis-tance Rmcan be adjusted to values between Ri and Ri+ Radd

Fig. 13-8 Slip manipulation through clocked switching of the additional resistance R_{add}

Variable-speed wind turbine with converter and direct voltage intermediate circuit

Fig. 13-9 Concept of a synchronous generator with AC-DC-AC converter

Variable-speed wind turbine with doubly-feeding asynchronous generator and converter in the rotor circuit

• With dynamic slip control it requires the more complex slip ring rotor instead of the squirrel-cage rotor. Since one percent slip equals one percent power loss in the rotor, it is reasonable to allow high values of slip only for brief intervals of time.

• If the power, that was exported from the rotor, is not converted into heat, but is in-stead fed into the grid via an AC-DC-AC converter the problem of heat dissipation is avoided. And the efficiency of the generator is improved.

Fig. 13-10 Wind turbine with asynchronous generator and converter in the rotor circuit

The relevant advantages of the modern variablespeed concepts are not found in their efficiency, but in:

- The reduction of power fluctuations during gusts,
- Significant relief for the structure in the strong wind range,
- The flexibility in adjusting the reactive power,
- The adaptation of the blade tip speed to local conditions

In summary: we gain increased flexibility with regard to the actual on-site conditions.

Wind turbines for stand-alone operation

Battery chargers

Fig. 13-15 Battery charger with a thermo element to switch in an additional inductance at high power levels; synchronous generator with excitation by permanent magnets

Resistive heaters with synchronous generators

Resistive heaters can be used to convert electric energy into thermal energy, for instance to make hot water.

Wind pump system with electrical power transmission

Wind pumping system operating with variable rotor speeds, a) Block diagram,

Four ranges of operation can be distinguished:

- A Low-speed idling of the rotor, power consumption determined by the friction in the bearings and gearbox, etc.
- B Generator delivers voltage: pump acts as fluid friction dynamometer since the rotational speed is not sufficient to overcome the geodetic head
- C Water pumping: operation of the wind pump close to optimal wind turbine power output
- D Speed and power limitation: by a centrifugal pitch control

Stand-alone wind turbines for insular grids

Fig. 13-21 Variable-speed asynchronous generator with an intermediate DC circuit

Wind turbines for hybrid systems

Fig. 13-25 Stand-alone system with a master synchronous machine (MSM), acc. [13]

Fig. 13-26 Wind-diesel system for the island Osmussaare (radar station) [10]

Wind-diesel-photovoltaic system (minimal grid)

Fig. 13-27 Hybrid system with power generation from several energy sources in a small grid [7]